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Abstract: In this study, a modification of variational iteration 

method is applied to solve nonlinear fractional integro-differential 

equations. The fractional derivative is considered in the Caputo 

sense. The approximate solutions are calculated in the form of a 

convergent series with easily computable components. Through 

examples, we will see the modified method performs extremely 

effective in terms of efficiency and simplicity to solve nonlinear 

fractional integro-differential equations. 
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1. Introduction 

       In recent years, it has turned out that many phenomena in 

physics, engineering, chemistry, and other sciences can be 

described very successfully by models using mathematical 

tool from fractional calculus, such as, frequency dependent 

damping behavior of materials, diffusion processes, motion 

of a large thin plate in a Newtonian fluid creeping and 

relaxation functions for viscoelastic materials. etc. In 

addition to use of fractional differentiation for the 

mathematical modeling of real world physical problems has 

been widespread in recent years, e.g. the modeling of 

earthquake, the fluid dynamic traffic model with fractional 

derivatives, measurement of viscoelastic material properties, 

etc. 

 

Most fractional differential equations do not have exact 

analytic solutions. There are only a few techniques for the 

solution of fractional integro-differential equations. Three of 

them are the Adomian decomposition method [1], the 

collocation method [2], and the fractional differential 

transform method [3]. The variational iteration method was 

proposed by he [4-10] and has found a wide application for 

the solution of linear and nonlinear differential equations, for 

example, linear fractional integro-differential equations[4], 

nonlinear wave equations [5], Fokker–Planck equation [6], 

Helmholtz equation [7], klein-Gordon equations [8], integro-

differential equations [9], and space and time-fractional KdV 

equation [10].  

 

       In the study presented, fractional differentiation and 

integration are understood in Caputo sense because of its 

applicability to real world physical problems. We will set a 

new modified variational iteration method to solve nonlinear 

fractional integro-differential equations. It will show the 

modification of the method is a useful and simplify tool to 

solve nonlinear fractional integro-differential equations as 

used in other fields. 

2. Basic Definitions 

       In this section, let us recall essentials of fractional 

calculus first. The fractional calculus is a name for the theory 

of integrals and derivatives of arbitrary order, which unifies 

and generalizes the notions of integer-order differentiation 

and n-fold integration.   We have well known definitions of a 

fractional derivative of order 0    such as Riemann–

Liouville, Grunwald–Letnikow, Caputo and Generalized 

Functions Approach [11,12]. The most commonly used 

definitions are the Riemann–Liouville and Caputo. For the 

purpose of this paper the Caputo’s definition of fractional 

differentiation will be used, taking the advantage of Caputo’s 

approach that the initial conditions for fractional differential 

equations with Caputo’s derivatives take on the traditional 

form as for integer-order differential equations. We give 

some basic definitions and properties of the fractional 

calculus theory   which were used through paper.  

 

Definition 2.1. A real function ( ), 0,f x x   is said to be in 

the space ,C R   if there exists a real number  ( )p  , 

such that 
1( ) ( ),pf x x f x  where 1( ) [0, ),f x C   and it said 

to be in the space  iff  , .m mC f C m N    

     

Definition 2.2. The Riemann–Liouville fractional integral 

operator of order 0,   of a function , 1,f C    is 

defined as 
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It has the following properties: 

For , 1, , 0f C        and 1:   

     

 

1. ( ) ( ),

2. ( ) ( ),

1
3. .

( 1)

J J f x J f x

J J f x J J f x

J x x

   

   

   


 









 

  

 

The Riemann–Liouville fractional derivative is mostly used 

by mathematicians but this approach is not suitable for the 

physical problems of the real world since it requires the 

definition of fractional order initial conditions, which have 

no physically meaningful explanation yet. Caputo introduced 

an alternative definition, which has the advantage of defining 

integer order initial conditions for fractional order 

differential equations.  

 

 

Definition 2.3.  The fractional derivative of ( )f x  in the 

Caputo sense is defined as 
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Lemma2.1.If  1 ,   and , 1,mm m m N f C         

then 
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The Caputo fractional derivative is considered here because 

it allows traditional initial and boundary conditions to be 

included in the formulation of the problem.  

 

Definition 2.4. For m to be the smallest integer that 

exceeds  , the Caputo time-fractional derivative operator of 

order 0   is defined as 
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and the space-fractional derivative operator of order 0   is 

defined as 
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3. Modification of the Variational Iteration 

Method 

Concerning the general fractional integro-differential 

equation of the type 

 
     

0

, , ,

t

D y t f t y t k s y ds
 

  
 

   (1)                                                                           

  

where D  is the derivative of  y t  in the sense of Caputo, 

and  1 ,n n n N     subject to the initial condition 

 

 0 .y c  

 

According to the variational iteration method (VIM), we can 

construct the following correction functional 

 

1( ) ( ) ( )n ny t y t I F t

    (2)                                                                                                           

 

where  
0

( ) ( ) , , , , ( )

t

n n n nF t D y t f t y k s y ds dt y t 

  
   

   
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is the n th approximation, and I   

 

is Riemann-Liouville`s fractional integrate. 

 

The lagrenge multiplier can not easy identified through (2), 

so approximation of the corrrection functional can be 

expressed as follows 
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Then the Lagrange multiplier can be easily determined by the 

variational theory in (3).  

  is a general Lagrange multiplier [13]. Lagrange 

multipliers 

 

1, for 1.n    

 

Substituting the identified Lagrange multiplier into (2) result 

in the following iteration procedures  
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4. Numerical Experiment 

In this section, we apply VIM to solve a nonlinear fractional 

integro-differential equations. All the results are calculated 

by using the symbolic computation software Maple. 
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Example 

 

Consider the following system of nonlinear fractional 

integral–differential equations, with initial values  

 

   1 0 1 2 0 2( ) 0 , ( ) 0n N n N  . 
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To solve this system by VIM, let us consider; 

 

  1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,n n n nn t n t I D n t g n t  
      
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where 
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   1 2( ) and ( )n nn t n t  are n th approximation. 

We start with  

 

   1 0 1 2 0 2( ) 0 , ( ) 0n N n N  , 

 

 by the variational iteration formula, we have  
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When 1  , then we have  
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which is the same solution given by Biazar [14]. 

 

5. Conclusion  

In this paper, we applied the modified variational iteration 

method for solving the nonlinear fractional integro-

differential equations. Comparison with other traditional 

methods, the simplicity of the method and the obtained exact 

results show that the modified variational iteration method is 

a powerful mathematical tool for solving nonlinear fractional 

integro-differential equations. The method was used in a 

direct way without using linearization, perturbation or 

restrictive assumptions. It may be concluded that the method 

is very powerful and efficient in finding analytical as well as 

numericalsolutions for wide classes of nonlinear fractional 

integro-differential equations. It provides more realistic 

series solutions that converge very rapidly in real physical 

problems. 
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